aboutsummaryrefslogtreecommitdiff
path: root/internal/siv_aead/correctness_test.go
blob: 0653e26a93fea6b9249ba77ab3d1e05e69269b01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
package siv_aead

import (
	"bytes"
	"encoding/hex"
	"testing"

	"github.com/aperturerobotics/jacobsa-crypto/siv"
)

// Test all supported key lengths
func TestKeyLens(t *testing.T) {
	keyLens := []int{32, 48, 64}
	nonce := make([]byte, 16)
	plaintext := []byte("foobar")
	for _, keyLen := range keyLens {
		key := make([]byte, keyLen)
		a := new2(key)
		ciphertext2 := a.Seal(nil, nonce, plaintext, nil)

		ciphertext, err := siv.Encrypt(nil, key, plaintext, [][]byte{nil, nonce})
		if err != nil {
			t.Error(err)
		} else if o := len(ciphertext) - len(plaintext); o != a.Overhead() {
			t.Errorf("keyLen=%d, actual overhead: %d\n", keyLen, o)
		}
		if !bytes.Equal(ciphertext, ciphertext2) {
			t.Errorf("siv and siv_aead produce different results")
		}
	}

}

// Test using a 32-byte key
func TestK32(t *testing.T) {
	key := bytes.Repeat([]byte{1}, 32)
	nonce := bytes.Repeat([]byte{2}, 16)
	plaintext := []byte{1, 2, 3, 4, 5, 6, 7, 8, 9}
	aData := make([]byte, 24)
	// Compare siv and siv_aead results
	sResult, err := siv.Encrypt(nonce, key, plaintext, [][]byte{aData, nonce})
	if err != nil {
		t.Fatal(err)
	}
	a := new2(key)
	aResult := a.Seal(nonce, nonce, plaintext, aData)
	if !bytes.Equal(sResult, aResult) {
		t.Errorf("siv and siv_aead produce different results")
	}
	expectedResult, _ := hex.DecodeString(
		"02020202020202020202020202020202ad7a4010649a84d8c1dd5f752e935eed57d45b8b10008f3834")
	if !bytes.Equal(aResult, expectedResult) {
		t.Errorf(hex.EncodeToString(aResult))
	}
	// Verify overhead
	overhead := len(aResult) - len(plaintext) - len(nonce)
	if overhead != a.Overhead() {
		t.Errorf("Overhead() returns a wrong value")
	}
	// Decrypt
	p1, err := a.Open(nil, aResult[:16], aResult[16:], aData)
	if err != nil {
		t.Error(err)
	}
	if !bytes.Equal(plaintext, p1) {
		t.Errorf("wrong plaintext")
	}
	// Decrypt and append
	dst := []byte{0xaa, 0xbb, 0xcc}
	p2, err := a.Open(dst, aResult[:16], aResult[16:], aData)
	if err != nil {
		t.Error(err)
	}
	p2e := append(dst, plaintext...)
	if !bytes.Equal(p2e, p2) {
		t.Errorf("wrong plaintext: %s", hex.EncodeToString(p2))
	}
	// Decrypt corrupt
	aResult[17] = 0
	_, err = a.Open(nil, aResult[:16], aResult[16:], aData)
	if err == nil {
		t.Error("should have failed")
	}
	// Decrypt and append corrupt
	aResult[17] = 0
	_, err = a.Open(dst, aResult[:16], aResult[16:], aData)
	if err == nil {
		t.Error("should have failed")
	}
}

// Test using a 64-byte key
func TestK64(t *testing.T) {
	key := bytes.Repeat([]byte{1}, 64)
	nonce := bytes.Repeat([]byte{2}, 16)
	plaintext := []byte{1, 2, 3, 4, 5, 6, 7, 8, 9}
	aData := make([]byte, 24)
	// Compare siv and siv_aead results
	sResult, err := siv.Encrypt(nonce, key, plaintext, [][]byte{aData, nonce})
	if err != nil {
		t.Fatal(err)
	}
	a := New(key)
	aResult := a.Seal(nonce, nonce, plaintext, aData)
	if !bytes.Equal(sResult, aResult) {
		t.Errorf("siv and siv_aead produce different results")
	}
	expectedResult, _ := hex.DecodeString(
		"02020202020202020202020202020202317b316f67c3ad336c01c9a01b4c5e552ba89e966bc4c1ade1")
	if !bytes.Equal(aResult, expectedResult) {
		t.Errorf(hex.EncodeToString(aResult))
	}
	// Verify overhead
	overhead := len(aResult) - len(plaintext) - len(nonce)
	if overhead != a.Overhead() {
		t.Errorf("Overhead() returns a wrong value")
	}
	// Decrypt
	p1, err := a.Open(nil, aResult[:16], aResult[16:], aData)
	if err != nil {
		t.Error(err)
	}
	if !bytes.Equal(plaintext, p1) {
		t.Errorf("wrong plaintext")
	}
	// Decrypt and append
	dst := []byte{0xaa, 0xbb, 0xcc}
	p2, err := a.Open(dst, aResult[:16], aResult[16:], aData)
	if err != nil {
		t.Error(err)
	}
	p2e := append(dst, plaintext...)
	if !bytes.Equal(p2e, p2) {
		t.Errorf("wrong plaintext: %s", hex.EncodeToString(p2))
	}
	// Decrypt corrupt
	aResult[17] = 0
	_, err = a.Open(nil, aResult[:16], aResult[16:], aData)
	if err == nil {
		t.Error("should have failed")
	}
	// Decrypt and append corrupt
	aResult[17] = 0
	_, err = a.Open(dst, aResult[:16], aResult[16:], aData)
	if err == nil {
		t.Error("should have failed")
	}
}