// +build !without_openssl // Package stupidgcm is a thin wrapper for OpenSSL's GCM encryption and // decryption functions. It only support 32-byte keys and 16-bit IVs. package stupidgcm // #include <openssl/evp.h> // #cgo pkg-config: libcrypto import "C" import ( "crypto/cipher" "fmt" "log" "unsafe" ) const ( // BuiltWithoutOpenssl indicates if openssl been disabled at compile-time BuiltWithoutOpenssl = false keyLen = 32 ivLen = 16 tagLen = 16 ) // StupidGCM implements the cipher.AEAD interface type StupidGCM struct { key []byte forceDecode bool } // Verify that we satisfy the cipher.AEAD interface var _ cipher.AEAD = &StupidGCM{} // New returns a new cipher.AEAD implementation.. func New(keyIn []byte, forceDecode bool) cipher.AEAD { if len(keyIn) != keyLen { log.Panicf("Only %d-byte keys are supported", keyLen) } // Create a private copy of the key key := append([]byte{}, keyIn...) return &StupidGCM{key: key, forceDecode: forceDecode} } // NonceSize returns the required size of the nonce / IV. func (g *StupidGCM) NonceSize() int { return ivLen } // Overhead returns the number of bytes that are added for authentication. func (g *StupidGCM) Overhead() int { return tagLen } // Seal encrypts "in" using "iv" and "authData" and append the result to "dst" func (g *StupidGCM) Seal(dst, iv, in, authData []byte) []byte { if len(iv) != ivLen { log.Panicf("Only %d-byte IVs are supported", ivLen) } if len(in) == 0 { log.Panic("Zero-length input data is not supported") } if len(g.key) != keyLen { log.Panicf("Wrong key length: %d. Key has been wiped?", len(g.key)) } // If the "dst" slice is large enough we can use it as our output buffer outLen := len(in) + tagLen var buf []byte inplace := false if cap(dst)-len(dst) >= outLen { inplace = true buf = dst[len(dst) : len(dst)+outLen] } else { buf = make([]byte, outLen) } // https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption#Authenticated_Encryption_using_GCM_mode // Create scratch space "context" ctx := C.EVP_CIPHER_CTX_new() if ctx == nil { log.Panic("EVP_CIPHER_CTX_new failed") } // Set cipher to AES-256 if C.EVP_EncryptInit_ex(ctx, C.EVP_aes_256_gcm(), nil, nil, nil) != 1 { log.Panic("EVP_EncryptInit_ex I failed") } // Use 16-byte IV if C.EVP_CIPHER_CTX_ctrl(ctx, C.EVP_CTRL_GCM_SET_IVLEN, ivLen, nil) != 1 { log.Panic("EVP_CIPHER_CTX_ctrl EVP_CTRL_GCM_SET_IVLEN failed") } // Set key and IV if C.EVP_EncryptInit_ex(ctx, nil, nil, (*C.uchar)(&g.key[0]), (*C.uchar)(&iv[0])) != 1 { log.Panic("EVP_EncryptInit_ex II failed") } // Provide authentication data var resultLen C.int if C.EVP_EncryptUpdate(ctx, nil, &resultLen, (*C.uchar)(&authData[0]), C.int(len(authData))) != 1 { log.Panic("EVP_EncryptUpdate authData failed") } if int(resultLen) != len(authData) { log.Panicf("Unexpected length %d", resultLen) } // Encrypt "in" into "buf" if C.EVP_EncryptUpdate(ctx, (*C.uchar)(&buf[0]), &resultLen, (*C.uchar)(&in[0]), C.int(len(in))) != 1 { log.Panic("EVP_EncryptUpdate failed") } if int(resultLen) != len(in) { log.Panicf("Unexpected length %d", resultLen) } // Finalise encryption // Because GCM is a stream encryption, this will not write out any data. dummy := make([]byte, 16) if C.EVP_EncryptFinal_ex(ctx, (*C.uchar)(&dummy[0]), &resultLen) != 1 { log.Panic("EVP_EncryptFinal_ex failed") } if resultLen != 0 { log.Panicf("Unexpected length %d", resultLen) } // Get GMAC tag and append it to the ciphertext in "buf" if C.EVP_CIPHER_CTX_ctrl(ctx, C.EVP_CTRL_GCM_GET_TAG, tagLen, (unsafe.Pointer)(&buf[len(in)])) != 1 { log.Panic("EVP_CIPHER_CTX_ctrl EVP_CTRL_GCM_GET_TAG failed") } // Free scratch space C.EVP_CIPHER_CTX_free(ctx) if inplace { return dst[:len(dst)+outLen] } return append(dst, buf...) } // Open decrypts "in" using "iv" and "authData" and append the result to "dst" func (g *StupidGCM) Open(dst, iv, in, authData []byte) ([]byte, error) { if len(iv) != ivLen { log.Panicf("Only %d-byte IVs are supported", ivLen) } if len(g.key) != keyLen { log.Panicf("Wrong key length: %d. Key has been wiped?", len(g.key)) } if len(in) <= tagLen { return nil, fmt.Errorf("stupidgcm: input data too short (%d bytes)", len(in)) } // If the "dst" slice is large enough we can use it as our output buffer outLen := len(in) - tagLen var buf []byte inplace := false if cap(dst)-len(dst) >= outLen { inplace = true buf = dst[len(dst) : len(dst)+outLen] } else { buf = make([]byte, len(in)-tagLen) } ciphertext := in[:len(in)-tagLen] tag := in[len(in)-tagLen:] // https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption#Authenticated_Encryption_using_GCM_mode // Create scratch space "context" ctx := C.EVP_CIPHER_CTX_new() if ctx == nil { log.Panic("EVP_CIPHER_CTX_new failed") } // Set cipher to AES-256 if C.EVP_DecryptInit_ex(ctx, C.EVP_aes_256_gcm(), nil, nil, nil) != 1 { log.Panic("EVP_DecryptInit_ex I failed") } // Use 16-byte IV if C.EVP_CIPHER_CTX_ctrl(ctx, C.EVP_CTRL_GCM_SET_IVLEN, ivLen, nil) != 1 { log.Panic("EVP_CIPHER_CTX_ctrl EVP_CTRL_GCM_SET_IVLEN failed") } // Set key and IV if C.EVP_DecryptInit_ex(ctx, nil, nil, (*C.uchar)(&g.key[0]), (*C.uchar)(&iv[0])) != 1 { log.Panic("EVP_DecryptInit_ex II failed") } // Set expected GMAC tag if C.EVP_CIPHER_CTX_ctrl(ctx, C.EVP_CTRL_GCM_SET_TAG, tagLen, (unsafe.Pointer)(&tag[0])) != 1 { log.Panic("EVP_CIPHER_CTX_ctrl failed") } // Provide authentication data var resultLen C.int if C.EVP_DecryptUpdate(ctx, nil, &resultLen, (*C.uchar)(&authData[0]), C.int(len(authData))) != 1 { log.Panic("EVP_DecryptUpdate authData failed") } if int(resultLen) != len(authData) { log.Panicf("Unexpected length %d", resultLen) } // Decrypt "ciphertext" into "buf" if C.EVP_DecryptUpdate(ctx, (*C.uchar)(&buf[0]), &resultLen, (*C.uchar)(&ciphertext[0]), C.int(len(ciphertext))) != 1 { log.Panic("EVP_DecryptUpdate failed") } if int(resultLen) != len(ciphertext) { log.Panicf("Unexpected length %d", resultLen) } // Check GMAC dummy := make([]byte, 16) res := C.EVP_DecryptFinal_ex(ctx, (*C.uchar)(&dummy[0]), &resultLen) if resultLen != 0 { log.Panicf("Unexpected length %d", resultLen) } // Free scratch space C.EVP_CIPHER_CTX_free(ctx) if res != 1 { // The error code must always be checked by the calling function, because the decrypted buffer // may contain corrupted data that we are returning in case the user forced reads if g.forceDecode == true { return append(dst, buf...), ErrAuth } return nil, ErrAuth } if inplace { return dst[:len(dst)+outLen], nil } return append(dst, buf...), nil } // Wipe tries to wipe the AES key from memory by overwriting it with zeros // and setting the reference to nil. // // This is not bulletproof due to possible GC copies, but // still raises to bar for extracting the key. func (g *StupidGCM) Wipe() { for i := range g.key { g.key[i] = 0 } g.key = nil }